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Abstract

We combine a high order compact finite difference approx-imation and collocation
techniques to numerically solve the two dimensional heat equation. The resulting method
is implicit arid can be parallelized with a strategy that allows parallelization across both
time and space. We compare the parallel implementation of tile new method with a
classical implicit method, namely the Crank-Nicolson method, where tile parallelization
is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
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1 Introduction

In [6], Jdz6quel combined the second-order standard finite difference approximation for the

spatial derivative and collocation technique for the time component to numerically solve the

one dimensional heat equation. The method, called implicit collocation method (ICM), is

unconditionally stable. Its principle is as follows: after discretization in space of the problem,

the solution is approximated at each spatial grid point by a polynomial depending on time.

The resulting derivation produces a linear system of equations. The order of the method

is in space the order of difference approximation and in time the degree of the polynomial

[2, 4, 5]. ICM when implemented on parallel computers, allows the parallelization across

both time and space. Numerical experiments carried out by J6zdquel on the Cray T3E_

show that the proposed ICM algorithm can achieve acceptable efllciency and under some

simple assumptions, performs better (computing time) than standard explicit finite difference

method [6].

Recently: we applied ICM to the two dimensional heat equation. For the spatial dis-

cretization, we used instead a fourth-order compact scheme dmt was shown to be more
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aCcllrate Lhan the secotld-ord_;r (me. Our ntlm(.q'ica] zesu]ts, perfi)rm¢_'d on a serial compuk'rs,

shmved again the stability of ICM [7].

Unfortunately, the previous analyses do not inchide a comparison between ICM and

other classical implicit techniques to solve the heat equation. Though in ICM we can compute

(utilizing a unique system of equation) the approximated solution at any point in a given time

interval, its use introduces an additional dimension (degree of polynomials) to the problem.

This increases the size of the system of equations to be solved> creates a lot of memory

requirement and a limitation on the number of spatial grid point to be employed. Though

ICM offers the parallelization across both time and space, it is not clear that it. is more

attractive> in terms of accuracy and parallel efficiency, compared to other implicit methods

where the parallelization is clone across space only.

In this paper, we compare ICM and a well known implicit technique, namely Crank-

Nicolson method, in the numerical solution of the two dimensional heat equation when a

fourth-order spacial discretization is employed. We use similar algorithms to implement both

methods on a shared memory parallel computer. We estimate the memory and computational

requirements of each method and determine the the set of conditions for which one method

is better than the other one. In our numerical experiments, we present the accuracy of the

approximated solution and the parallel efficiency of each method.

An outline of the paper is as follows. Section 2 presents the two different types of

discretization. Section 3 discusses some computational considerations needed to implement

the two methods. Section 4 describes the algorithms. Numerical experiments appear in
Section 5. _Ve formulate some conclusion in Section 6

2

We consider the two dimensional heat equation:

Ou z / 02u O_'u"
5-[(,y,t) = _2 __g_Z_2(x,v,t) +_._y2(x,

Derivation of the System of Equations

y, t)), (z, y, t) _ n × [0,_) (1)

where _ = [0, 1] x [0, 1], and with the initial condition

_,(_,v, 0) = ¢(_, v), (_, v) e a,

and the boundary conditions

u(O,g,t)=fo(y,t), u(1,y,t) =fl(y,t), n(.c,O,t) =g0(x,t), and u(x,l,t) =gl(x,t) for t_>O.

_,_ assmne that f0, fl, go and gl are smooth flmctions in ttle variable t, i.e., their first

derivatives with respect to t exist and are continuous.

Let h = 1In and At be the uniform spatial and time mesh-widths respectively. We can

subdivide the spatial domain and consider the time step as follows:

xi=ih, gj =jh, i,j=O, 1,...,n

tk = kAt, k = O, 1,...
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For simplicity we write the ;q)proxitnated solution of u and its time (lerivatiw_' at tlw spat.ial

grid points (xi, y.7) as:

O?L ,

_,j(t.) = _(_.,,yj, t), a_d u[,j(t.) = 5-[tx,, yj, t).

At any given time t, if we use the discretization of the steady state Poisson equation

with a fourth-order scheme [3], we can approximate the spatial derivatives of (1). We obtain

for any grid point (xi,yj) , i, j = l,....,n- I:

_ I t vL [U[+t,j(t) + U_.j+I ( ) + U[_l,j(t ) + U_.j_l(t ) + 8U[j(t)]

Ot 2

= -U[4 (u,+_,j(t) + u,,j+_(t) + u,__,j(t) + y_j__(t))
+v_+_,j+_(t)+ u_-_,.i+_(t)+ u,_tj_t(t) + u_+_,j__(t)- 20bS,j(t)],

with the conditions

(2)

cr_,_(0)= ¢(_, yj),

Uo,j(t) = fo(yj, t),

u,,j(t) = f_(y¢, t),

U,,o(t) = go(z. t),

ui,n(t) = gl (xi, t),

u;j(t) = -_t (u_,t),

u_j(t) = -_t (y_,t),

Ogo (x
v'o(t) = -fff _ ,,t),

U[,n(t ) = _(xi, _).

Eq. 2 is a system of (n - 1) 2 ordinary differential equations and for any value of t, it

is fourth-order in space. In the next two sections, we introduce two methods for discretizing
the time derivative.

2.1 Crank-Nicolson NIethod

Let U_Ij be the appoximation of u(x, y, t) at, the spatial grid point (xi, yj) and the time level
tk = kAt. Using (2), if we apply the Crank-Nicolson derivation [1], we get

p(U_+_ U_+ _ r;_+t- i+lj+l + ,-_,j+_ + uk+_.y-1 + vi+_,j-l_

+(_ 4_,,u _+_ u_+_ u_+_ _+_ _0_)u_j_a-- t)lt i+l,j -4- i,j+L 4- i-t,j at- Ui,j-1) 4- (8 4-

k

+(1+_)(u_+_,_+ u_:_+ u_)__) (s-4-ub__,j4- , 4- 2op)%
Ot 2

where p = 717At. After some simple manipulations, we obtain the linear system of equations

BU _'+t = FU k + R (4)

where g k+l and U x' are vectors with components C +l, and U_j, i,j = 1,...,n- l, re-

spectively, R is a (n - 1)-9 dhnensional vector coittaining the values of U k+l and /ark at, the

boundary of the domain, and B and b-' are matrices of order (u - 1) 2 given by:

B = t'ri[B_,, Be, Bt]n-l, /7 = tri[F_l, Fo, Ft]n-t
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wh[H'o

B-t = tri[-p, [ - 4p, -p]n_t, F_ l = t ri[p_ 1 + lp, p]n_l ,

Bo = tri[l-,lp, 8+2Op, l-4p]n__, Fo = tri[l+4p, 8-2Op, l+4p],__l,

B1 = tri[-p, 1 -4p,-P],,-t, FL = tri[p, 1 + 4p, Pin-1.

The subscript n- 1 is the number of rows.

Tile Crank-Nicolson method (CNM) is unconditionally stable and is of fourth order in

space and second order in time.

2.2 Implicit Collocation Method

Let Pid(t) be the polynomial of de_ee r satisfying the system (2) at the spatial grid point

(xi,yj) and at times tk = kAt (k = O,...,r - 1). Then for any i,j = 1,...,n- 1 and
k -- O,...,r- 1, we have

r-1
Pi,j(tk) ----ai,j,rtrk + ai,j,r-lt k + "'" + ai,jjt_ + ai,j,O.

Tile coefficients a%j,o are determined from the initial condition:

aij,0 = P_,j(0)= 5%(0) = ¢(zi, yj).

To solve the system (2) by the collocation method is to determine the coefficients ai,j,l, .. • , aid,r,

for i,j = 1,... ,n- 1. After some algebraic manipulations (see [6, 7] for details) we obtain

the linear system of r(n - 1)2 equations

AX = S,

where A is a block-tridiagonal matrix given by

A = tri[Al_l,Al,At+t]n_l •

At-I, At and Al+t are square matrices (of order r(n - 1)) defined as

Al-t = tri -E, 2E'-4E'-E ,
rt--I

h 2 h e , 1 h 2 E' -

At+t : tri t-E. l h_-E'-4E,-E]
' 2 _2 n-I

The subscript n - 1 determines the number of block-rows.
matrices of order r

E

t; _-' ... to )

t_ t[-_ t_

r--[

trr_t tr_ t ... tr_ t

(5)

E and E' are nonsymmetric

,.r4-_ (,._ 1)t;-2
r--l. (F r-2rlr_ l 1)/r_t

• .. 2to 1

• .- 2tt 1

• .. 2t__l 1
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the vector X has the r(l_- 1)'_ unknowns ai,j,t, a,,j.'_,.... ,ai,j,r, for i,j = 1,... ,n- 1, and the

right hand side S is exl)licitly given in [7].

The implicit collocation method (ICM) i,_troduced here is of order four in space and of

order r in time. To solve the heat equation by ICM, we first determine the coe/lqcient a_,j,k,

and then compute the wdues of t,he polynomials Pi,j(t) at t = t,.. Numerical results presented

in [7] show that ICM is unconditionally stable and produces high accurate solutions.

3 Computational Considerations

To determine the approximated solution of the heat equation using CNM, we need to solve

the linear system (4) where B is a matrix of order (n - i) 9- and bandwidth 2n + 1. If we

use ICbl, we first solve the system (5) to obtain the coefficients aij,k (i,j = 1,...,n-- 1 and

k = 1,...,r). Then the approximated values Ui,j(tk) (i,j = 1,...,n--1 and h = 1,...,r-1)

are calculated using the polynomials Pi,j(t). Here, the matrix A is of order r(n- 1) 2 and its

bandwidth is equal to (2n + 1)r. The matrix A is r 2 times as large as B.

For a given r, if we were to compare CNM (evaluated r consecutive times) and ICM

using the same At, it is obvious that the implementation of CNM would be faster since

the decompostion of the matrix A would be by far more computational demanding. The

advantage orICM is that it does not consist of determining the Ui,j(tk) only (k = 1,..., r- I),

but also allows us to find the approximated solution at any t in the interval [to, tr-t]. For a

"fair" comparison, we can choose different At for the two methods as follows.

Let Ncnm = (n - 1) 2 be the number of unknowns in (4) and let Nicm -- r(n - 1) 2 the

one in (5) where r is the degree of the polynomials. Let Aticm be the time step used for ICM.

The solution using ICM, can be determined at any point in the interval [0, (r - 1)Aticm]. Let

(r- 1)m be the number of equidistant points where the solution is to be computed in this time

interval. To determine the solution at the same points of the interval with CNM, (r - 1)m

time iterations must be carried out. The corresponding time step is Atcnm = Aticm/m.

Given the above assumptions, we want to numerically determine the values of m for

which ICM is cheaper than CNM for r and Aticm fixed. In fact, we will compare the two

methods over the interval [0, T] (where T = rl(r - 1)Ati_m). In this case, both methods will

be iterated until we reach the approximated solution at t = T. We assume ICM and CNM

produce solutions of comparable accuracies.

4 Description of the Parallel Implementation

With the considerations laid out in the previous section, rl consective iterations of ICM will

be carried ou_ to obtain the solut, ion over the time interval [0, T] (T = q(r- 1)Aticm). At

each iteration of ICM, the solution will be approximated at (r - 1)m time levels. If we want,

to determine the solution over the same interval [0, T] using CNM (Atenm = Aticm/m), CNM

will be called (r'- 1)rim consecutive times.

For n, r, Z-_ticrn , 11 and m given, we can define the algorithms for both methods as
follows:

ICM's Algorithm
1. Define the matrix .4

2. Decompose the matrix A to obtain the matrix ,_[ _ A-t
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3. For l = l --> 7/, do:

4. Defino. the right hand si(ie S

5. Determine the coefficients ai,j,_,-: _[AX = l'v[S

6. Find Ui,j(tk) at (r- 1)rn consecutive time steps by computing Pi,j(lk)

7. End do

CNNI's Algorithm
1. Define tile matrix B

2. Decompose the matrix B to obtain the matrix Q (_ B -1)

3. FoE" l = 1 --_ m(r - 1)r/, do:
4. Define the right hand side S = FU t-1 + R

5. Find the solution: QBU t = QS
7. End do

We present two strategies for implementing the two algorithms. We focus on ICM's

Algorithm with the assumption that the same techniques will be utilized for the one of CNM.

Strategy 1:

To solve the linear system of equations, we used the decomposition algorithm for inverting

asymmetric and indefinite matrices proposed by Luo [8]. Here, the inverse of the matrix A :-_
is explicitly computed, i.e., M = d ± (Step 2): It follows tlmt :step5_:(X = MS')is iUst a

matrix vector multiplication. Given the polynomial coefficients ai,j,k (obtained in Step 5),

Step 6 computes Pi,j(tk) using Hornet's algorithm.

Strategy 2:

In this case, a sparse matrix M _ A -1 is explicitly computed and used as a preconditioner for

the sparse matrix A (Step 2). A method based on Luo's algorithm is employed by dropping

(in the calculations of M) all the entries that are less than (in absolute value) a prescribed

tolerance r > 0 [9].

(GMRES) algorithm

previous strategy.

To avoid the storage

with the compressed

To carry out Step 5 (MAX = MS), the General Minimal Residual

is used as the iterative accelerator. Finally Step 6 is the same as in the

of zero elements, the nonzero entries of the matrix A are stored by rows
row format.

In Strategy 1, no data compression is used. In the case of of ICM, it limits the number

of spatial grid points we can choose. The decomposition of matrix A (ICM) will cost at least

r 3 times more than the one of B (CNM).

The fact to obtain the solution at (r - 1)m consecutive time steps dnring one iteration

of the ICM's algorithm shows that with ICM, tile parallelization is achieved across both time

and space.

In [7], we observed that the choice of a small value of r (say r = 3 or r = 4) can be

appropriate to obtain accurate solutions in a short amount of time. Such a choice limits the

size of the matrix A which decomposition is the most demanding computation and tile most

difficult to parallelize. Since Steps 1 and 2 are done once, more time will be spent on right

hand side updates (Step 4), matrix-vector multiplications or iterative process (Step 5) and

basic loop calculations (Step 6) until the desired time step is rea,:hed. All these three steps
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can (,asily be iml)lmnented on parallel computm's and the efficiency of the algorithm will be

improw;d. In the numerical experiments, we consider r = 3.

5 Numerical Experiments

The numerical experiments were conducted on a SGI Origin 2000 with 24 processors each

running at 250 M'Hz and 512 MB memory. The programs were coded in Fortran 90 prog-ram-

ruing language in double precision with 64-bit arithmetic. The parallel implementation of the

two algorithms was achieved by introducing parallel directives (thread commands) in all the

major loops.

For all our simulations, we consider Eq. 1 with the conditions

1
a = -, u(x, y, 0) = sin 7rx + sin Try,

71"

fo(Y, t) = fl (Y, t) = e -t sin Try, go(x, t) = gl (x, t) = e -t sin 7rx.

The exact solution is given by u(x, y, t) = (sin 7rx + sinTry)e -t.

To simplify our analysis, we take for all the experiments n = 32, r = 3, Aticm = 0.01,
and T = 10.0.

For different values of m, we report the elapsed times obtained with both ICM and CNM

when 4 processors are employed. The results appear in Figure 1 and Figure 2 for Strate_-E¢

1 and Strategy 2 (with the dropping parameter r = 10 -5) respectively. We observe that for

rn > 80, ICM with Strategic 1 is more cost effective. If Strategy 2 is instead used, we need

only m > 10 to have ICM better than CNM•

In addition, for ICM, Strategy 1 requires more time to reach the target time step. In fact, the

factorization of the matrix A takes most of the computing time• We did not take advantage

of the bandwidth of the matrix A. If we did, we would have reduced the factorization time

at the expense of the parallel efficiency [9].
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Figure l: Strategy l: elapsed time as func-
tion of m

Figure 2: Strategy 2: elapsed time as func-
tion of m.
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For m = 15, we present tile speedup as function of the number of processors when ICM

and CNM arc both implemented with Strategy 1 and Strategy 2.

From Figure 3, we note that when Strategy 1 is used, CNM scates very well across the

processors whereas ICM is less efficient. If we examine the computing time required by each

component of the algorithm, we see that for CNM', at most 7% of the total time is spent on

the matrix decomposition. In ICM, the same decomposition takes at least 80% of the time.

The Luo's matrix decomposition has a moderate efficiency. This explains why ICM does not
scale that well.

On the other hand, if we focus on Strategy 2, the matrix factorization (done sequentially)

takes a small percentage of the time (less than 13%) for both ICM and CNM (due in part

for the data compression). However, ICM displays a better efficiency (Figure 4). This is due

to the fact that. ICM requires a larger problem size and therefore a better load balancing is

achieved on the remaining part of the code (at least 87% of the total time) that is easy to
parallelize.

8
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± • | i , ,
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Figure 3: Strategy 1: speedup as function

of the number of processors for rn = 15.

Figure 4: Strategy 2: speedup as function

of the number of processors for rn = 15.

Finally, we observe that the approximate solutions were slightly more accurate with

CNM for Strategy 1-and with ICM for Strategy 2. The maximum errors obtained were not

significantly different to draw definitive conclusions.

6 Conclusions

We have compared the Crank-Nicolson method (CNM) and the implicit collocation method

(ICM) in the numerical solution of the two dimensional heat equation. In both methods, the

spatial derivatives are discretized with a high order finite difference scheme and the resulting

approximations give linear systems of equations. Vv_ presented two parallel strategies to

implement ICM and CNM on the SGI Origin 2000. Our numerical experiments showed that

under some simple assumptions, ICikl can require less elapsed time than CNM and can be
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more efficienl,. The larger nutnber of unknowns ill [CM can allow a better load balancing but

unFortunat, ely does not allow us to solve large size prol)lems whereas CNM does.

In onr cod,_'s, we used parallel directives on all the major Do-loops. The matrix decom-

positions used here were either done seqnentially or did not display good efficiency. In future

work, we plan to implement CNM with message passing directive and to explore parallel

matrix decomposition algorithms.
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